Combining Machine Learning and Pharmacophore-Based Interaction Fingerprint for in Silico Screening
نویسندگان
چکیده
In this study, we developed a new pharmacophore-based interaction fingerprint (Pharm-IF) and examined its usefulness for in silico screening using machine learning techniques such as support vector machine (SVM) and random forest (RF) instead of similarity-based ranking. Using the docking results of PKA, SRC, cathepsin K, carbonic anhydrase II, and HIV-1 protease, the screening efficiencies of the Pharm-IF models were compared to GLIDE score and the residue-based IF (PLIF) models. The combination of SVM and Pharm-IF demonstrated a higher enrichment factor at 10% (5.7 on average) than those of GLIDE score (4.2) and PLIF (4.3). In terms of the size of the training sets, learning more than five crystal structures enabled the machine learning models to stably achieve better efficiencies than GLIDE score. We also employed the docking poses of known active compounds, in addition to the crystal structures, as positive samples of training sets. The enrichment factors of the RF models at 10% using the docking poses for SRC and cathepsin K showed significantly higher values (6.5 and 6.3) than those using only the crystal structures (3.9 and 3.2), respectively.
منابع مشابه
Hot-Spots-Guided Receptor-Based Pharmacophores (HS-Pharm): A Knowledge-Based Approach to Identify Ligand-Anchoring Atoms in Protein Cavities and Prioritize Structure-Based Pharmacophores
The design of biologically active compounds from ligand-free protein structures using a structure-based approach is still a major challenge. In this paper, we present a fast knowledge-based approach (HS-Pharm) that allows the prioritization of cavity atoms that should be targeted for ligand binding, by training machine learning algorithms with atom-based fingerprints of known ligand-binding poc...
متن کاملIdentification of Novel Serotonin Transporter Compounds by Virtual Screening
The serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) plays an essential role in the termination of serotonergic neurotransmission by removing 5-HT from the synaptic cleft into the presynaptic neuron. It is also of pharmacological importance being targeted by antidepressants and psychostimulant drugs. Here, five commercial databases containing approximately 3.24 million drug-like compoun...
متن کاملCombining structure-based pharmacophore modeling, virtual screening, and in silico ADMET analysis to discover novel tetrahydro-quinoline based pyruvate kinase isozyme M2 activators with antitumor activity
Compared with normal differentiated cells, cancer cells upregulate the expression of pyruvate kinase isozyme M2 (PKM2) to support glycolytic intermediates for anabolic processes, including the synthesis of nucleic acids, amino acids, and lipids. In this study, a combination of the structure-based pharmacophore modeling and a hybrid protocol of virtual screening methods comprised of pharmacophor...
متن کاملThe Virtual Screening of the Drug Protein with a Few Crystal Structures Based on the Adaboost-SVM
Using the theory of machine learning to assist the virtual screening (VS) has been an effective plan. However, the quality of the training set may reduce because of mixing with the wrong docking poses and it will affect the screening efficiencies. To solve this problem, we present a method using the ensemble learning to improve the support vector machine to process the generated protein-ligand ...
متن کاملGeneration of structure-based pharmacophores using energetic analysis – application on fragment docking
We describe a novel method to develop energetically optimized, structure-based pharmacophores for use in rapid in silico screening. The method combines pharmacophore perception and database screening with protein ligand energetic terms computed by the Glide XP scoring function to rank the importance of pharmacophore features. We derive energy-optimized pharmacophore hypotheses for 30 pharmaceut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of chemical information and modeling
دوره 50 1 شماره
صفحات -
تاریخ انتشار 2010